Targeting the Hedgehog pathway in combination with X‑ray or carbon ion radiation decreases migration of MCF‑7 breast cancer cells

  • Authors:
    • Katrien Konings
    • Niels Belmans
    • Randy Vermeesen
    • Bjorn Baselet
    • Greta Lamers
    • Ann Janssen
    • Sofie Isebaert
    • Sarah Baatout
    • Karin Haustermans
    • Marjan Moreels
  • View Affiliations

  • Published online on: October 18, 2019     https://doi.org/10.3892/ijo.2019.4901
  • Pages: 1339-1348
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The use of carbon ion therapy for cancer treatment is becoming more widespread due to the advantages of carbon ions compared with X‑rays. Breast cancer patients may benefit from these advantages, as the surrounding healthy tissues receive a lower dose, and the increased biological effectiveness of carbon ions can better control radioresistant cancer cells. Accumulating evidence indicates that the Hedgehog (Hh) pathway is linked to the development and progression of breast cancer, as well as to resistance to X‑irradiation and the migratory capacity of cancer cells. Hence, there is an increasing interest in targeting the Hh pathway in combination with radiotherapy. Several studies have already investigated this treatment strategy with conventional radiotherapy. However, to the best of our knowledge, the combination of Hh inhibitors with particle therapy has not yet been explored. The aim of the present study was to investigate the potential of the Hh inhibitor GANT61 as an effective modulator of radiosensitivity and migration potential in MCF‑7 breast cancer cells, and compare potential differences between carbon ion irradiation and X‑ray exposure. Although Hh targeting was not able to radiosensitise cells to any radiation type used, the combination of GANT61 with X‑rays or carbon ions (energy: 95 MeV/n; linear energy transfer: 73 keV/µm) was more effective in decreasing MCF‑7 cell migration compared with either radiation type alone. Gene expression of the Hh pathway was affected to different degrees in response to X‑ray and carbon ion irradiation, as well as in response to the combination of GANT61 with irradiation. In conclusion, combining Hh inhibition with radiation (X‑rays or carbon ions) more effectively decreased breast cancer cell migration compared with radiation treatment alone.

References

1 

Durante M and Loeffler JS: Charged particles in radiation oncology. Nat Rev Clin Oncol. 7:37–43. 2010. View Article : Google Scholar

2 

Suit H, DeLaney T, Goldberg S, Paganetti H, Clasie B, Gerweck L, Niemierko A, Hall E, Flanz J, Hallman J and Trofimov A: Proton vs carbon ion beams in the definitive radiation treatment of cancer patients. Radiother Oncol. 95:3–22. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Weyrather WK and Debus J: Particle beams for cancer therapy. Clin Oncol (R Coll Radiol). 15:S23–S28. 2003. View Article : Google Scholar

4 

Hamada N: Recent insights into the biological action of heavy-ion radiation. J Radiat Res. 50:1–9. 2009. View Article : Google Scholar

5 

PTCOG Patient Statistics: Particle Therapy Co-Operative Group (PTCOG), Villigen 2016. https://www.ptcog.ch/index.php/ptcog-patient-statisticsurisimplehttps://www.ptcog.ch/index.php/ptcog-patient-statistics.

6 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI

7 

Corbin K and Mutter R: Proton therapy for breast cancer: Progress & pitfalls. Breast Cancer Management. 7:2018. View Article : Google Scholar

8 

Menezes KM, Wang H, Hada M and Saganti PB: Radiation matters of the heart: A mini review. Front Cardiovasc Med. 5:832018. View Article : Google Scholar : PubMed/NCBI

9 

Akamatsu H, Karasawa K, Omatsu T, Isobe Y, Ogata R and Koba Y: First experience of carbon-ion radiotherapy for early breast cancer. Jpn J Radiol. 32:288–295. 2014. View Article : Google Scholar : PubMed/NCBI

10 

Weber DC, Abrunhosa-Branquinho A, Bolsi A, Kacperek A, Dendale R, Geismar D, Bachtiary B, Hall A, Heufelder J, Herfarth K, et al: Profile of European proton and carbon ion therapy centers assessed by the EORTC facility questionnaire. Radiother Oncol. 124:185–189. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Lorusso G and Rüegg C: New insights into the mechanisms of organ-specific breast cancer metastasis. Semin Cancer Biol. 22:226–233. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Nicolini A, Giardino R, Carpi A, Ferrari P, Anselmi L, Colosimo S, Conte M, Fini M, Giavaresi G, Berti P and Miccoli P: Metastatic breast cancer: An updating. Biomed Pharmacother. 60:548–556. 2006. View Article : Google Scholar : PubMed/NCBI

13 

Karhadkar SS, Bova GS, Abdallah N, Dhara S, Gardner D, Maitra A, Isaacs JT, Berman DM and Beachy PA: Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature. 431:707–712. 2004. View Article : Google Scholar : PubMed/NCBI

14 

Gonnissen A, Isebaert S and Haustermans K: Hedgehog signaling in prostate cancer and its therapeutic implication. Int J Mol Sci. 14:13979–14007. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Kubo M, Nakamura M, Tasaki A, Yamanaka N, Nakashima H, Nomura M, Kuroki S and Katano M: Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 64:6071–6074. 2004. View Article : Google Scholar : PubMed/NCBI

16 

O'Toole SA, Machalek DA, Shearer RF, Millar EK, Nair R, Schofield P, McLeod D, Cooper CL, McNeil CM, McFarland A, et al: Hedgehog overexpression is associated with stromal interactions and predicts for poor outcome in breast cancer. Cancer Res. 71:4002–4014. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Cui W, Wang LH, Wen YY, Song M, Li BL, Chen XL, Xu M, An SX, Zhao J, Lu YY, et al: Expression and regulation mechanisms of sonic hedgehog in breast cancer. Cancer Sci. 101:927–933. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Chang L, Zhao D, Liu HB, Wang QS, Zhang P, Li CL, Du WZ, Wang HJ, Liu X, Zhang ZR and Jiang CL: Activation of sonic hedgehog signaling enhances cell migration and invasion by induction of matrix metalloproteinase-2 and -9 via the phos-phoinositide-3 kinase/AKT signaling pathway in glioblastoma. Mol Med Rep. 12:6702–6710. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Chen Q, Gao G and Luo S: Hedgehog signaling pathway and ovarian cancer. Chin J Cancer Res. 25:346–353. 2013.PubMed/NCBI

20 

Yan R, Peng X, Yuan X, Huang D, Chen J, Lu Q, Lv N and Luo S: Suppression of growth and migration by blocking the hedgehog signaling pathway in gastric cancer cells. Cell Oncol (Dordr). 36:421–435. 2013. View Article : Google Scholar

21 

Feldmann G, Dhara S, Fendrich V, Bedja D, Beaty R, Mullendore M, Karikari C, Alvarez H, Iacobuzio-Donahue C, Jimeno A, et al: Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: A new paradigm for combination therapy in solid cancers. Cancer Res. 67:2187–2196. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Isohata N, Aoyagi K, Mabuchi T, Daiko H, Fukaya M, Ohta H, Ogawa K, Yoshida T and Sasaki H: Hedgehog and epithelial-mesen-chymal transition signaling in normal and malignant epithelial cells of the esophagus. Int J Cancer. 125:1212–1221. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Yoo YA, Kang MH, Lee HJ, Kim BH, Park JK, Kim HK, Kim JS and Oh SC: Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP-9 pathway in gastric cancer. Cancer Res. 71:7061–7070. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Lin Z, Li S, Sheng H, Cai M, Ma LY, Hu L, Xu S, Yu LS and Zhang N: Suppression of GLI sensitises medulloblastoma cells to mitochondria-mediated apoptosis. J Cancer Res Clin Oncol. 142:2469–2478. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Chen Q, Xu R, Zeng C, Lu Q, Huang D, Shi C, Zhang W, Deng L, Yan R, Rao H, et al: Down-regulation of Gli transcription factor leads to the inhibition of migration and invasion of ovarian cancer cells via integrin β4-mediated FAK signaling. PLoS One. 9:e883862014. View Article : Google Scholar

26 

Magistri P, Battistelli C, Strippoli R, Petrucciani N, Pellinen T, Rossi L, Mangogna L, Aurello P, D'Angelo F, Tripodi M, et al: SMO inhibition modulates cellular plasticity and invasiveness in colorectal cancer. Front Pharmacol. 8:9562018. View Article : Google Scholar : PubMed/NCBI

27 

Yue D, Li H, Che J, Zhang Y, Tseng HH, Jin JQ, Luh TM, Giroux-Leprieur E, Mo M, Zheng Q, et al: Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas. J Exp Clin Cancer Res. 33:342014. View Article : Google Scholar : PubMed/NCBI

28 

Zeng J, Aziz K, Chettiar ST, Aftab BT, Armour M, Gajula R, Gandhi N, Salih T, Herman JM, Wong J, et al: Hedgehog pathway inhibition radiosensitises non-small cell lung cancers. Int J Radiat Oncol Biol Phys. 86:143–149. 2013. View Article : Google Scholar

29 

Gonnissen A, Isebaert S, McKee CM, Dok R, Haustermans K and Muschel RJ: The hedgehog inhibitor GANT61 sensitises prostate cancer cells to ionizing radiation both in vitro and in vivo. Oncotarget. 7:84286–84298. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Teichman J, Dodbiba L, Thai H, Fleet A, Morey T, Liu L, McGregor M, Cheng D, Chen Z, Darling G, et al: Hedgehog inhibition mediates radiation sensitivity in mouse xenograft models of human esophageal adenocarcinoma. PLoS One. 13:e01948092018. View Article : Google Scholar : PubMed/NCBI

31 

Tsai CL, Hsu FM, Tzen KY, Liu WL, Cheng AL and Cheng JC: Sonic Hedgehog inhibition as a strategy to augment radiosensitivity of hepatocellular carcinoma. J Gastroenterol Hepatol. 30:1317–1324. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Franco AI, Eastwick G, Farah R, Heyboer M, Lee M and Aridgides P: Upfront radiotherapy with concurrent and adjuvant vismodegib is effective and well-tolerated in a patient with advanced, multifocal basal cell carcinoma. Case Rep Dermatol Med. 2018:23541462018.PubMed/NCBI

33 

Schulze B, Meissner M, Ghanaati S, Burck I, Rodel C and Balermpas P: Hedgehog pathway inhibitor in combination with radiation therapy for basal cell carcinomas of the head and neck: First clinical experience with vismodegib for locally advanced disease. Strahlenther Onkol. 192:25–31. 2016. View Article : Google Scholar

34 

Pollom EL, Bui TT, Chang AL, Colevas AD and Hara WY: Concurrent vismodegib and radiotherapy for recurrent, advanced basal cell carcinoma. JAMA Dermatol. 151:998–1001. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Raleigh DR, Algazi A, Arron ST, Neuhaus IM and Yom SS: Induction hedgehog pathway inhibition followed by combined-modality radiotherapy for basal cell carcinoma. Br J Dermatol. 173:544–546. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Atwood SX, Chang AL and Oro AE: Hedgehog pathway inhibition and the race against tumor evolution. J Cell Biol. 199:193–197. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L, Holcomb T, Stinson J, Gould SE, Coleman B, et al: Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med. 361:1173–1178. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Chang AL and Oro AE: Initial assessment of tumor regrowth after vismodegib in advanced Basal cell carcinoma. Arch Dermatol. 148:1324–1325. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Gonnissen A, Isebaert S, McKee CM, Muschel RJ and Haustermans K: The effect of metformin and GANT61 combinations on the radiosensitivity of prostate cancer cells. Int J Mol Sci. 18:E3992017. View Article : Google Scholar : PubMed/NCBI

40 

Zhou J, Wu K, Gao D, Zhu G, Wu D, Wang X, Chen Y, Du Y, Song W, Ma Z, et al: Reciprocal regulation of hypoxia-inducible factor 2α and GLI1 expression associated with the radioresis-tance of renal cell carcinoma. Int J Radiat Oncol Biol Phys. 90:942–951. 2014. View Article : Google Scholar

41 

Lesueur P, Chevalier F, El-Habr EA, Junier MP, Chneiweiss H, Castera L, Muller E, Stefan D and Saintigny Y: Radiosensitization effect of talazoparib, a parp inhibitor, on glioblastoma stem cells exposed to low and high linear energy transfer radiation. Sci Rep. 8:36642018. View Article : Google Scholar : PubMed/NCBI

42 

Soule HD, Vazguez J, Long A, Albert S and Brennan M: A human cell line from a pleural effusion derived from a breast carcinoma. J Natl Cancer Inst. 51:1409–1416. 1973. View Article : Google Scholar : PubMed/NCBI

43 

Durantel F, Balanzat E, Cassimi A, Chevalier F, Ngono-Ravache Y, Madi T, Poully JC, Ramillon JM, Rothard H, Ropars F, et al: Dosimetry for radiobiology experiments at GANIL. Nuclear instruments and methods in physics research section A: Accelerators, Spectrometers, Detectors and Associated Equipment. Elsevier. 816:70–77. 2016.

44 

Suetens A, Moreels M, Quintens R, Soors E, Buset J, Chiriotti S, Tabury K, Gregoire V and Baatout S: Dose- and time-dependent gene expression alterations in prostate and colon cancer cells after in vitro exposure to carbon ion and X-irradiation. J Radiat Res. 56:11–21. 2015. View Article : Google Scholar :

45 

Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29:e452001. View Article : Google Scholar : PubMed/NCBI

46 

Moncharmont C, Levy A, Guy JB, Falk AT, Guilbert M, Trone JC, Alphonse G, Gilormini M, Ardail D, Toillon RA, et al: Radiation-enhanced cell migration/invasion process: A review. Crit Rev Oncol Hematol. 92:133–142. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Fujita M, Imadome K, Shoji Y, Isozaki T, Endo S, Yamada S and Imai T: Carbonion irradiation suppresses migration and invasiveness of human pancreatic carcinoma cells MIAPaCa-2 via Rac1 and RhoA degradation. Int J Radiat Oncol Biol Phys. 93:173–180. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Fujita M, Yamada S and Imai T: Irradiation induces diverse changes in invasive potential in cancer cell lines. Semin Cancer Biol. 35:45–52. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Matsumoto Y, Furusawa Y, Uzawa A, Hirayama R, Koike S, Ando K, Tsuboi K and Sakurai H: Antimetastatic effects of carbon-ion beams on malignant melanomas. Radiat Res. 190:412–423. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL and Wahl GM: Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66:9339–9344. 2006. View Article : Google Scholar : PubMed/NCBI

51 

Zhang X, Li X, Zhang N, Yang Q and Moran MS: Low doses ionizing radiation enhances the invasiveness of breast cancer cells by inducing epithelial-mesenchymal transition. Biochem Biophys Res Commun. 412:188–192. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Chapman JD, Doern SD, Reuvers AP, Gillespie CJ, Chatterjee A, Blakely EA, Smith KC and Tobias CA: Radioprotection by DMSO of mammalian cells exposed to X-rays and to heavy charged-particle beams. Radiat Environ Biophys. 16:29–41. 1979. View Article : Google Scholar : PubMed/NCBI

53 

Goddu SM, Narra VR, Harapanhalli RS, Howell RW and Rao DV: Radioprotection by DMSO against the biological effects of incorporated radionuclides in vivo-Comparison with other radioprotectors and evidence for indirect action of Auger electrons. Acta Oncol. 35:901–907. 1996. View Article : Google Scholar

54 

Fushimi K, Uzawa K, Ishigami T, Yamamoto N, Kawata T, Shibahara T, Ito H, Mizoe JE, Tsujii H and Tanzawa H: Susceptible genes and molecular pathways related to heavy ion irradiation in oral squamous cell carcinoma cells. Radiother Oncol. 89:237–244. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Kamlah F, Hänze J, Arenz A, Seay U, Hasan D, Juricko J, Bischoff B, Gottschald OR, Fournier C, Taucher-Scholz G, et al: Comparison of the effects of carbon ion and photon irradiation on the angiogenic response in human lung adenocarcinoma cells. Int J Radiat Oncol Biol Phys. 80:1541–1549. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Gan GN, Eagles J, Keysar SB, Wang G, Glogowska MJ, Altunbas C, Anderson RT, Le PN, Morton JJ, Frederick B, et al: Hedgehog signaling drives radioresistance and stroma-driven tumor repopulation in head and neck squamous cancers. Cancer Res. 74:7024–7036. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Suetens A, Moreels M, Quintens R, Chiriotti S, Tabury K, Michaux A, Gregoire V and Baatout S: Carbon ion irradiation of the human prostate cancer cell line PC3: A whole genome microarray study. Int J Oncol. 44:1056–1072. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Zhou X, Zhang X, Xie Y, Tanaka K, Wang B and Zhang H: DNA-PKcs inhibition sensitises cancer cells to carbon-ion irradiation via telomere capping disruption. PLoS One. 8:e726412013. View Article : Google Scholar

59 

Sai S, Vares G, Kim EH, Karasawa K, Wang B, Nenoi M, Horimoto Y and Hayashi M: Carbon ion beam combined with cisplatin effectively disrupts triple negative breast cancer stem-like cells in vitro. Mol Cancer. 14:1662015. View Article : Google Scholar : PubMed/NCBI

60 

Suzuki M, Kase Y, Yamaguchi H, Kanai T and Ando K: Relative biological effectiveness for cell-killing effect on various human cell lines irradiated with heavy-ion medical accelerator in Chiba (HIMAC) carbon-ion beams. Int J Radiat Oncol Biol Phys. 48:241–250. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Wada M, Suzuki M, Liu C, Kaneko Y, Fukuda S, Ando K and Matsufuji N: Modeling the biological response of normal human cells, including repair processes, to fractionated carbon beam irradiation. J Radiat Res. 54:798–807. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December 2019
Volume 55 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Konings, K., Belmans, N., Vermeesen, R., Baselet, B., Lamers, G., Janssen, A. ... Moreels, M. (2019). Targeting the Hedgehog pathway in combination with X‑ray or carbon ion radiation decreases migration of MCF‑7 breast cancer cells. International Journal of Oncology, 55, 1339-1348. https://doi.org/10.3892/ijo.2019.4901
MLA
Konings, K., Belmans, N., Vermeesen, R., Baselet, B., Lamers, G., Janssen, A., Isebaert, S., Baatout, S., Haustermans, K., Moreels, M."Targeting the Hedgehog pathway in combination with X‑ray or carbon ion radiation decreases migration of MCF‑7 breast cancer cells". International Journal of Oncology 55.6 (2019): 1339-1348.
Chicago
Konings, K., Belmans, N., Vermeesen, R., Baselet, B., Lamers, G., Janssen, A., Isebaert, S., Baatout, S., Haustermans, K., Moreels, M."Targeting the Hedgehog pathway in combination with X‑ray or carbon ion radiation decreases migration of MCF‑7 breast cancer cells". International Journal of Oncology 55, no. 6 (2019): 1339-1348. https://doi.org/10.3892/ijo.2019.4901